ACG Final Report

Yiping Liu*
liu-yp23@mails.tsinghua.edu.cn
2023010874

Mengjie Zhao

zhaomj23@mails.tsinghua.edu.cn

Figure 1: A poster of our project.

2 Method
2.1 Scene layout

1 Introduction

In this project, we aim to simulate the experience of flying a real
FPV (First-Person View) drone, a challenging task that requires
precise control and excellent hand-eye coordination. To replicate
the complexity of a real drone flight, our game introduces the
need for four separate key bindings to control the four degrees of
freedom, testing the player’s skill and precision. The game also
features bullets with tracking capabilities, adding an extra layer of
strategic gameplay.

The objective is for players to fly through as many rings as pos-
sible while avoiding or destroying self-destructing enemy drones.
Successfully passing through rings or eliminating enemies earns
points, and the goal is to achieve the highest score. Additionally,
our game supports a two-player mode, where the players must
compete to be the first to pass through each ring, or eliminate each
other. Since each ring can only be passed through once, this creates
an exciting competitive dynamic.

In real-world FPV drone racing, pilots use specialized joysticks
and display equipment for control, while keyboard operation is less
intuitive. Thus, designing an effective control scheme for our simula-
tion was a significant challenge. Our solution is to control the drone
using a keyboard that simulates a mechanical joystick, and the joy-
stick’s parameters are then used to manipulate the drone’s flight
dynamics. This method required redesigning the drone control al-
gorithm to account for the mechanical joystick’s input. Through
careful tuning of parameters, we aim to provide the best possible
control feel, though mastering the game remains challenging for
players.

“The author of this report.

This subsection corresponds to the part of Scene layout: reasonable
object geometry, textures, and materials. This part is basic.

In our project, we utilize Three. js to create a well-structured
scene layout by carefully selecting object geometries, textures, and
materials. For object geometry, we use built-in shapes like cubes,
spheres, and custom 3D models that align with the scene’s design.
Textures are applied to give surfaces realistic detail, while ma-
terials such as MeshStandardMaterial and MeshPhongMaterial
are chosen to achieve the desired visual effects, including lighting
interactions and reflections. This combination ensures a visually
appealing and interactive 3D environment.

2.2 Environment lighting

This part is worth 1pt.

We implement environment lighting in Three. js by using vari-
ous light sources such as AmbientLight and DirectionallLight.

In addition, we use Three. js’s environment mapping to im-
plement environment reflection, which allows objects to achieve
relatively realistic reflection effects while improving performance.

To achieve this, in addition to setting up ambient light and
directional light in the scene, we can load an HDR texture rep-
resenting the background and set both scene.background and
scene.environment to this texture. Figure 2 demonstrates this ef-
fect, where we can see that the object’s surface reflects the color of
the background.

Figure 2: This environment light.

2.3 Synchronized audio
This part is worth 1pt.

We use Three. js to implement audio by creating an AudioListener

and attaching it to the camera, which allows the listener to perceive
sound in the 3D space.

For positional audio, we utilize PositionalAudio objects, which
are linked to specific 3D objects, enabling sound to vary in volume
and direction based on the listener’s position relative to the audio
source.

2.4 Animation

This part corresponds to the part Include animations, whether simple
keyframe animations or more complex ones, which is basic.

We use the requestAnimationFrame() method to implement
animations, which schedules the next frame of the animation to be
rendered.

2.5 Eliminating Stuttering and Jitter by
Smoothing Frame Rate Instability

This part is not on the grading sheet, but we believe it is worth at
least 1 point, as the method used here is simple but powerful.

dt over time

0.0170 — dt
blurred dt
0.0169 4

0.0168

- MAW ; MAv"v“WhuAv'\‘ w

0.0165

0.0164 1

0.0163 4

Figure 3: dt over time.

To implement movement, the common approach is to use the
time difference between two frames as dt, approximating the move-
ment of an object between those frames.

In our game, the movement speed of objects is very fast, and
the method for calculating object movement is relatively complex.
For example, in first-person perspective, the camera follows the
complex movements of a drone, and in third-person perspective,
the camera adds inertia, among other factors.

However, unstable frame rates often occur, such as when the
game starts, when certain events are triggered, or when switching
tabs. If a naive implementation is used, frame rate instability could
cause the movement of the camera and certain objects to become
uneven, resulting in noticeable stuttering and jitter that shouldn’t
exist.

To solve this problem, we need to eliminate the high-frequency
components in the dt frequency. Inspired by anti-aliasing algo-
rithms, we use the following method to calculate the actual dt for
each frame:

k-1
1
dipturrealil = 7) dtli = J]. M
j=0

That is, we take the average of the previous k frames. This
approach can almost completely eliminate stuttering and jitter.
Figure 3 shows the difference between the processed dt and the
unprocessed dt over time.

2.6 Collision handling

This part is worth 2pts.

We use cannon-es as our physics engine to handle collisions.
It provides built-in support for simulating elasticity and friction.
Additionally, we detect collision events and react based on the
information of each event.

For example, we use the getImpactVelocityAlongNormal()
method to get the velocity along the normal, and apply the corre-
sponding damage to the object based on it.

2.7 Control of the main game character

This part is basic, but given the complexity of the control algorithm
we use, [believe this deserves at least 1 extra point.

The control of a drone is quite complex. A real-world drone
is controlled by two joysticks, each controlling two degrees of
freedom. Specifically:

e The up/down direction of the first joystick controls the
throttle, i.e., the vertical force.

o The left/right direction of the first joystick controls the yaw
speed.

e The up/down direction of the second joystick controls the
pitch speed.

o The left/right direction of the second joystick controls the
roll speed.

Additionally, the throttle size slightly affects the drone’s ability
to control its attitude. When the throttle is zero, the drone’s attitude
cannot be controlled at all. As the throttle increases, the ability
to hold the attitude becomes stronger, reaching its maximum at a
certain value.

We chose to use the keyboard to control the drone, so we need
four sets of keys (a total of eight keys) to control the four degrees
of freedom. The challenge with keyboard control is that it only

has two states—“pressed” or “not pressed”—and cannot control the
force like a joystick to smoothly control the speed. Our solution is
to use the keyboard to control two virtual joysticks, and these two
joysticks will control the drone.

Keyboard-Controlled Joystick. Each joystick’s two dimensions are
independent, and we consider one dimension here. The joystick’s
coordinate x is constrained to [—1, 1], and the joystick’s output is
its coordinate x. The state of the keyboard at each frame is a value
target € {—1,0, 1}. The joystick’s speed is then given by:

v = target - pullForce — x - springForce,

where pullForce and springForce are constants representing the
pull force and spring force.

The joystick also needs a "dead zone," meaning it tends to stay
at the origin when close to it. To implement this, after each frame
of motion, if |x| < deadZone, we multiply x by 0.99.

By independently setting the values of each dimension for each
joystick, we can balance the feel of different operations.

Joystick Control of the Drone. Let the current frame’s joystick in-
puts for throttle, yaw, pitch, and roll be cyrotties CYaws CPitchs CRoll €
[—1, 1]. We also define constants Liyottles Lyaws Lpitchs LRroll that rep-
resent the limits of the corresponding degrees of freedom. By multi-
plying the corresponding input and limit, we get the control param-
eters for the drone at this frame: throttle, AYaw, APitch, ARoll. We
aim to apply an upward force of size throttle and want the drone’s
angular velocity to be w¢ = w(AYaw, APitch, ARoll).

First, calculate the parameter:

min(0.1, |Cthrottle|)

= — o ltottlel) g g
pr 0.1

which represents the drone’s ability to control its rotation. The next
frame’s angular velocity is:

wnext = (1 = pr)@last + Prove.
Next, calculate the parameter:
Po = min(0.5, |chrotle]) X 0.01

which represents the drone’s ability to control its translation. We
multiply this by the velocity to simulate the drone’s control over
its attitude.

Finally, apply a force with size throttle in the upward direction
to complete the control for this frame.

2.8 Camera motion control

This subsection corresponds to the part of Camera motion control
either in third-person or first-person view. This part is basic.

To achieve this, we only need to set the relative position and
angle between the camera and the object in both the first-person
and third-person views, and then assign a switch key to allow
toggling between the two views at any time.

Additionally, sometimes the objects viewed in the two perspec-
tives are different. For example, in the first-person view, we do not
want to see the body, and the position of the weapon may need
to be adjusted in the view. We can use the ‘layer functionality
in Three. js, setting two layers to represent the objects visible in

the first-person and third-person views. Then, we assign the cor-
responding layer to each object. We can also set a layer to display
the collision boxes, which will be shown when needed.

Figure 4 illustrates both the objects visible in the first-person
and third-person views, as well as the collision boxes. The white
box in the image represents the collision box, and the small gun
in the top right corner is what would be visible in the first-person
view, but it is not displayed in the third-person view.

Figure 4: The objects visible in first-person and third-person
views.

2.9 Camera shakes

This part corresponds to the part of Implement suitable camera
shakes during collisions or movement to enhance immersion, which
is worth 2pts.

To implement this, we only need to add a small random displace-
ment to the camera in each frame.

2.10 A complex third view camera

Figure 5: Camera rotations.

We implemented a more complex third view camera that has
inertia and cannot go through the walls. We believe this deserves
at least 2 point.

To avoid dizziness during flight, we need to add inertia to the
third-person camera, meaning the camera’s position will slightly
shift based on the current controls. After experimentation, we found
that the best effect in preventing dizziness is achieved when both
rotational inertia and distance inertia are applied simultaneously.

Additionally, in third-person view, if there is an obstacle behind
the drone, we need to prevent the camera from passing through
the obstacle.

To achieve rotational inertia, we calculate the current angle of
the camera relative to the drone, denoted as wnow, and the target
angle (i.e., the angle without inertia), denoted as wgoq. Let the time
between two frames be At seconds. The camera’s rotation for the
next frame is set as:

slerp(wnow, Wgoals 1 — 0.9100At).

See Figure 5 for different camera rotations.

For distance, we need to consider both inertia and obstacles. We
can use Three. js’s Raycaster to detect if there are any obstacles
along the camera’s path to the drone and determine the position of
the closest obstacle to the drone.

Case 1: There are obstacles. The camera’s distance for the next
frame is set as:

max(dmin, dinter» dnow — YmaxAt),

where dp,i, represents the minimum distance limit, dinte, represents
the position of the closest obstacle to the drone, and dyoy represents
the previous frame’s camera distance. vmax represents the speed
limit.

Case 2: No obstacles. Let 7 be the vector from the camera’s target
position to the drone’s current position, and let dgoq = |F], 7 =
7/dgoal, and AX be the drone’s displacement in this frame.

There are two stages in calculating the distance for the next
frame. To implement inertia, we first calculate:

dy = dnow + clamp(Ax - 7, -1, 1),

where clamp(x, xj, x,) = max(x;, min(x,, x)).
Then, to ensure repositioning after moving away from an obsta-
cle or when the drone stops moving, we calculate:

dy = dgoal + clamp ((dl - dgoal) : kAt, —UmaxAt, ZJmaxAt) .

If dy is unobstructed, we set the camera distance to ds.

2.11 UI Design

This subsection corresponds to:

e Proper game start and end interfaces (basic)
o Additional auxiliary interfaces (up to 2pts)
o User-friendly layout with visually appealing design (1pt)

We build a scene using Three. js to implement the start and end
interfaces, with property animations. We place the player in a sci-fi
themed room, where they can interact with objects in the room
to select a drone and start the game. It looks extremely cool. See
Figure 6.

Moreover, we designed a blood bar, an attitude indicator, a score
displayer, a pair of joystick displayers, and a warning sign when
the drone leaves the map border. See Figure 7.

The attitude indicator is a ball that shows the drone’s attitude.
We use another 3D scene to show it, and render it separately.

The blood bar features a built-in mechanism that displays a trace
when the player is injurede. The trace moves at a speed of kx, where
x is the difference between the current trace position and the actual
health.

Also, we set a red border around the screen indicates that the
player is injured, The width of the border depends on the severity
of the injury.

Figure 6: The start screen.

Deviation
o Signal Lost o

(b) The warning sign

(a) The blood bar and the score
displayer

(d) Joystick displayers

(c) The attitude indicator

Figure 7: Auxiliary interfaces.

Figure 8: When the player is injured.

Figure 8 shows the blood bar trace and the border.

2.12 Entity AI

This part is not on the grading sheet, but we believe it is worth at
least 2 point as it’s hard to implement.

The game features two types of strategic entities: bullets with
tracking functionality and enemies with AL

The strategies of these entities can be seen as Finite State Ma-
chine, having different states that transition to other states after
certain events. For example, the states of a bullet include "Charg-
ing," "Flying," and "Explosion,’ while the states of an enemy include
"Wandering,' "Chasing," and "Returning." The enemy’s movement is
further divided into three stages: "Searching for Target," "Turning,'
and "Moving" Each state has a corresponding strategy, and we omit
the formulas for these strategies as they are trivial.

2.13 Explosion simulation

This part is not on the grading sheet, but we believe it is worth at
least 1 point.

To achieve a realistic explosion, we implemented a complex
particle system with five layers of particles. The properties of each
type of particles are shown in Table 1.

The parameters for the five types of particles are shown in Ta-
ble 2, where Rand(/, r) denotes a uniformly random real number
in the interval [[,r], and Shell(L, r) denotes a uniformly random
vector within a spherical shell with radius [I, r]. Figure 9 shows a
picture for each type of particles.

Property | Description
X0 Initial position, where the origin is the center
of the explosion.
0y Initial velocity.
ro Initial size.
00 Initial opacity.
s Generation time, the particle is generated at
time s after the explosion begins.
L Particle lifetime, the particle disappears after
time L.
fr(x) A function from [0, 1] to [0, 1]. At time ¢ after
birth, the size is rg - f; (¢/L).
fo(x) A function from [0, 1] to [0, 1]. At time ¢ after
birth, the velocity is op - f (¢/L).
Jo(x) A function from [0, 1] to [0, 1]. At time ¢ after
birth, the opacity is og - fo (¢/L).

Table 1: Particle properties

2.14 Heating effect

This part is not on the grading sheet, but we believe it is worth at
least 1 point.
In the game, the enemy will heat up before self-destructing, so
we need to simulate its material during the gradual heating process.
The metal will transition unevenly between red and orange as it
heats up. The gradient coefficient at position (x,y) (0 < x,y < 1)is

Property | Flash Fire Sparks
Count 1 10 50
%0 0 | R-Shell(0.1,0.7) | R-Shell(0.1,0.7)
o 0 R - Shell(0.5,3) l"Tgl -Rand(10,15) - R
ro R R -Rand(0.5, 1.5) R -Rand(0.02,0.1)
00 1 1 1
s 0 Rand(0,0.1) Rand(0,0.1)
0.4 Rand(0.2,0.4) Rand(0.2,0.4)
fr 1-x 1-x3 1-x°
fo 1 1 1-x°
fo 1 1 1-x3
Property Smoke Debris
Count 20 20
X0 R - Shell(0.3,1.2) R - Shell(0.5,1)
) R - Shell(0.5,3) ﬁ%-Rmﬁ6J®~R
ro R-Rand(0.3,0.5) | R-Rand(0.02,0.1)
00 Rand(0,0.3) Rand(0,0.7)
s Rand(0,0.2) Rand(0,0.1)
Rand(0.5, 1) Rand(0.3,0.6)
fr 1-x3 1-x
fo 1-x3 1-x?
fo 1-x* 1-x*

Table 2: Particle parameters.

(a) Flash.

(b) Fire.

(c) Sparks.

(d) Smoke.

(e) Debris.

defined as

flxy) =

(f) Combine them.

Figure 9: The explosion.

Z?:o 2! sin(2% (x + kx;)) cos(2! (y + ky;)))
+

1
o 5
2 232

i

where kx; and ky; are uniformly random values in the range [0, 27].
It is easy to observe that f(x,y) € [0, 1].

We use this coefficient to perform a gradient from orange to red,
and the resulting color is denoted as c(x, y).

Next, we calculate the texture after heating. We extract the orig-
inal texture of the enemy and then modify the color of the pixel at
position (x,y) to

colorpew = lerp(coloryyg, c(x/W,y/H), 0.95)

where W and H are the width and height of the image, respectively.
Figure 10b shows the modified texture and Figure 10c shows the
enemy after the texture change.

Finally, we moderately scale up the modified enemy, change its
blending mode and transparency, adjust its emissive map to match
the texture, and adjust its transparency and emissive intensity in
real time based on the enemy’s temperature to achieve the effect of
gradual heating. Figure 10d shows the final effect.

(a) The original enemy. (b) The modified texture.

(c) After changing the texture.

(d) The final effect.

Figure 10: Heating effect.

2.15 Multi-player mode

This part is worth 3pts.

Our game supports a two-player mode. We simply create two
elements on the left and right sides of the webpage, and replicate
all scenes and components in both elements. Our code structure
allows this operation to be achieved by passing the elements as
parameters. The effect is shown in Figure 11.

Additionally, to leverage the renderer’s cache, the same ‘renderer’
is used for both the left and right sides, which greatly reduces
memory usage.

Figure 11: Multi-player modes.

2.16 Customizable character appearance

This part is worth 2pts.

We have set up two drones for the player to switch between
freely.

On the code level, we have implemented logic that allows the
player’s color theme to be changed. After changing the theme,
all colors related to the player will be updated. However, for the
convenience of gameplay, the theme is pre-defined rather than
being freely selectable by the player.

2.17 User manual

This part corresponds to the part of User manual or instructions,
which is basic.

Our gameplay manual is integrated with the gameplay itself,
rather than just being text-based instructions.

We have implemented a dedicated scene for tutorial purposes,
which includes guidance and instructions for the next steps, helping
players better understand the game mechanics. The specific effect
can be seen in Figure 12.

Figure 12: Manual mode.

2.18 Online access

This part corresponds to the part of Easy installation or online access,
which is worth 2pts.

We have deployed the game on GitHub Pages, and it can be
accessed at https://he-ren.github.io/ACG_Project_2024Fall/ for
playing anytime.

https://he-ren.github.io/ACG_Project_2024Fall/

Figure 13: Screenshots.

3 Results

For technical details, please refer to the images displayed earlier.
Figure 13 shows additional screenshots of the game. For more de-
tails, please visit our game website at https://he-ren.github.io/AC
G_Project_2024Fall/ to play.

4 Discussion

Although we have implemented many details, the game still feels
quite thin. Therefore, more rich elements need to be added in future
development.

Additionally, our code structure allows for easy integration of
gamepad support, which can be implemented in future develop-
ment.

Moreover, because the required keybindings are very complex,
it is inconvenient for two players to use a single screen and a single
keyboard. Therefore, an online multiplayer mode can also be added
in the future.

5 Personal Contribution Statement

The following parts of the game were implemented by me:

(1) Scene layout: reasonable object geometry, textures, and mate-
rials (basic).

(2) Include animations, whether simple keyframe animations or
more complex ones (basic).

(3) Eliminating Stuttering and Jitter by Smoothing Frame Rate
Instability. This part is not on the grading sheet, but we
believe it is worth at least 1 extra point.

(4) Collision handling (2pts).

(5) Control of the main game character (basic), but given the
complexity of the control algorithm we use, we believe it is
worth at least 1 extra point.

(6) Camera motion control either in third-person or first-person
view (basic).
(7) A complex third view camera. We believe it is worth at least
2 points.
(8) Entity AI This part is not on the grading sheet, but we
believe it is worth at least 2 points.
(9) Explosion simulation. This part is not on the grading sheet,
but we believe it is worth at least 1 point.
(10) Heating effect This part is not on the grading sheet, but we
believe it is worth at least 1 point.
(11) Multi-player mode (3pts).
(12) Customizable character appearance (2pts).
(13) Easy installation or online access (2pts).

3D Models Used in the Game

The following 3D models are used in the game under Creative
Commons licenses:

e Parrot Camo drone by domiiniic, used under CC BY 4.0.
Available at https://sketchfab.com/3d-models/parrot-camo-
drone-351867524b9b478fa406aad31d838ef4.

e Drone by Kai Xiang, used under CC BY 4.0. Available at
https://sketchfab.com/3d-models/drone-fa5e5e3b0f6c40
23b8e3d189cf55662f.

o (FREE) Robot Drone SDC-01 by SDC PERFORMANCE, used
under CC BY 4.0. Available at https://sketchfab.com/3d-
models/free-robot-drone-sdc-01-666c2f8810494952863f
9cc8bd273133.

o Sci-Fi Door by thomass3278, used under CC BY 4.0. Avail-
able at https://sketchfab.com/3d-models/sci-fi-door-
33e67bdeee8b48ba9a617b238565430f.

e CyberRoom by Julialce, used under CC BY 4.0. Avail-
able at https://sketchfab.com/3d-models/cyberroom-scifi-
fb9e951263f84af290bfb96ede790d01.

e Button_ruby //[imail, used under CC BY 4.0. Available
at https://sketchfab.com/3d-models/button-ru-71c4c4be5f
1b4d5d846919e87490b03e.

e Camera Button by miranda. j.rice, used under CC BY
4.0. Available at https://sketchfab.com/3d-models/camera-
button-c22068209db048948253a205fc5a211f.

o Single-Channel Counting Device "SCCD2_4" by NeRD,
used under CC BY 4.0. Available at https://sketchfab.co
m/3d-models/single-channel-counting-device-sccd2-4-
afd69a65d90f4844bfd92edb042ae132.

e Panel (product design) by Mrhigh, used under CC BY
4.0. Available at https://sketchfab.com/3d-models/panel-
product-design-fbelc3c2d109457486a50f41508a512.

e Sci-Fi Panels by Xavi Pujadas, used under CC BY 4.0.
Available at https://sketchfab.com/3d-models/sci-fi-panels-
c1243c5a9e954¢539b2c181c886dad62.

e gun satellite panel Computer by Mehdi Shahsavan, used
under CC BY 4.0. Available at https://sketchfab.com/3d-
models/gun-satellite-panel-computer-cc3ca5adf3704c19
8800dd8dc7fafbbf.

e Technology aperture out by Yuki, used under CC BY 4.0.
Available at https://sketchfab.com/3d-models/technology-
aperture-out-a47045451f1843bfa69105f84b779717.

https://he-ren.github.io/ACG_Project_2024Fall/
https://he-ren.github.io/ACG_Project_2024Fall/
https://sketchfab.com/3d-models/parrot-camo-drone-351867524b9b478fa406aad31d838ef4
https://sketchfab.com/3d-models/parrot-camo-drone-351867524b9b478fa406aad31d838ef4
https://sketchfab.com/3d-models/drone-fa5e5e3b0f6c4023b8e3d189cf55662f
https://sketchfab.com/3d-models/drone-fa5e5e3b0f6c4023b8e3d189cf55662f
https://sketchfab.com/3d-models/free-robot-drone-sdc-01-666c2f8810494952863f9cc8bd273133
https://sketchfab.com/3d-models/free-robot-drone-sdc-01-666c2f8810494952863f9cc8bd273133
https://sketchfab.com/3d-models/free-robot-drone-sdc-01-666c2f8810494952863f9cc8bd273133
https://sketchfab.com/3d-models/sci-fi-door-33e67bdeee8b48ba9a617b238565430f
https://sketchfab.com/3d-models/sci-fi-door-33e67bdeee8b48ba9a617b238565430f
https://sketchfab.com/3d-models/cyberroom-scifi-fb9e951263f84af290bfb96ede790d01
https://sketchfab.com/3d-models/cyberroom-scifi-fb9e951263f84af290bfb96ede790d01
https://sketchfab.com/3d-models/button-ru-71c4c4be5f1b4d5d846919e87490b03e
https://sketchfab.com/3d-models/button-ru-71c4c4be5f1b4d5d846919e87490b03e
https://sketchfab.com/3d-models/camera-button-c22068209db048948253a205fc5a211f
https://sketchfab.com/3d-models/camera-button-c22068209db048948253a205fc5a211f
https://sketchfab.com/3d-models/single-channel-counting-device-sccd2-4-afd69a65d90f4844bfd92edb042ae132
https://sketchfab.com/3d-models/single-channel-counting-device-sccd2-4-afd69a65d90f4844bfd92edb042ae132
https://sketchfab.com/3d-models/single-channel-counting-device-sccd2-4-afd69a65d90f4844bfd92edb042ae132
https://sketchfab.com/3d-models/panel-product-design-fbe1c3c2d109457486a50ff41508a512
https://sketchfab.com/3d-models/panel-product-design-fbe1c3c2d109457486a50ff41508a512
https://sketchfab.com/3d-models/sci-fi-panels-c1243c5a9e954c539b2c181c886dad62
https://sketchfab.com/3d-models/sci-fi-panels-c1243c5a9e954c539b2c181c886dad62
https://sketchfab.com/3d-models/gun-satellite-panel-computer-cc3ca5adf3704c198800dd8dc7fafbbf
https://sketchfab.com/3d-models/gun-satellite-panel-computer-cc3ca5adf3704c198800dd8dc7fafbbf
https://sketchfab.com/3d-models/gun-satellite-panel-computer-cc3ca5adf3704c198800dd8dc7fafbbf
https://sketchfab.com/3d-models/technology-aperture-out-a47045451f1843bfa69105f84b779717
https://sketchfab.com/3d-models/technology-aperture-out-a47045451f1843bfa69105f84b779717

o SciFiPanel Control by Vladyslav Holhanov, used under
CC BY 4.0. Available at https://sketchfab.com/3d-models
/sci-fi-panel-control-fa12fa24d2664932988c2af9cce565a6.

o Space nebula HDRI panorama 360 skydome by Aliaksandr.melas,

used under CC BY 4.0. Available at https://sketchfab.com/

3d-models/space-nebula-hdri-panorama-360-skydome-

270e7a54eble44fcbd5ddb2c1e537993.

o Transformers: War For Cybertron Fusion Cannon This
work is based on "Transformers: War For Cybertron Fusion
Cannon" by wickacik (available at https://sketchfab.co

m/3d-models/transformers-war-for-cybertron-fusion-

cannon-57ac9f96d4eb4c01ab5ab4996e45318e), licensed
under CC BY 4.0. We modified its color in the game.

Futuristic Roundtable This work is based on "Futuristic
Roundtable" by Andulil (available at https://sketchfab.co
m/3d-models/futuristic-roundtable-252bf93ec1d8452881
15581¢5358be26), licensed under CC BY 4.0.

Drone This work is based on "Drone" by E11liotGriffiths
(available at https://sketchfab.com/3d-models/drone-
ad0e1d85295847409¢961de33c2eelObf), licensed under CC
BY 4.0.

e TRON-ish low-poly drone This work is based on "TRON-

ish low-poly drone" by Bachklamk (available at https://
sketchfab.com/3d-models/tron-ish-low-poly-drone-
cad1fc9ada864e06ab69a37705656392), licensed under CC
BY 4.0.

https://sketchfab.com/3d-models/sci-fi-panel-control-fa12fa24d2664932988c2af9cce565a6
https://sketchfab.com/3d-models/sci-fi-panel-control-fa12fa24d2664932988c2af9cce565a6
https://sketchfab.com/3d-models/space-nebula-hdri-panorama-360-skydome-270e7a54eb1e44fcbd5ddb2c1e537993
https://sketchfab.com/3d-models/space-nebula-hdri-panorama-360-skydome-270e7a54eb1e44fcbd5ddb2c1e537993
https://sketchfab.com/3d-models/space-nebula-hdri-panorama-360-skydome-270e7a54eb1e44fcbd5ddb2c1e537993
https://sketchfab.com/3d-models/transformers-war-for-cybertron-fusion-cannon-57ac9f96d4eb4c01ab5ab4996e45318e
https://sketchfab.com/3d-models/transformers-war-for-cybertron-fusion-cannon-57ac9f96d4eb4c01ab5ab4996e45318e
https://sketchfab.com/3d-models/transformers-war-for-cybertron-fusion-cannon-57ac9f96d4eb4c01ab5ab4996e45318e
https://sketchfab.com/3d-models/futuristic-roundtable-252bf93ec1d845288115581c5358be26
https://sketchfab.com/3d-models/futuristic-roundtable-252bf93ec1d845288115581c5358be26
https://sketchfab.com/3d-models/futuristic-roundtable-252bf93ec1d845288115581c5358be26
https://sketchfab.com/3d-models/drone-ad0e1d85295847409e961de33c2ee0bf
https://sketchfab.com/3d-models/drone-ad0e1d85295847409e961de33c2ee0bf
https://sketchfab.com/3d-models/tron-ish-low-poly-drone-cad1fc9ada864e06ab69a37705656392
https://sketchfab.com/3d-models/tron-ish-low-poly-drone-cad1fc9ada864e06ab69a37705656392
https://sketchfab.com/3d-models/tron-ish-low-poly-drone-cad1fc9ada864e06ab69a37705656392

Advanced Computer Graphics Project Final Report:
Drones

Instructed by Li Yi

Yiping Liu Mengjie Zhao
Tsinghua, IIIS Tsinghua, ITIS
liuyiping23@mails.tsinghua.edu.cn zhaomj23@mails.tsinghua.edu.cn

1 Introduction

The project is a 3D competitive game named Drones. The main mechanism of the game is that players
control the drones to pass level while fighting against the enemies, in which the fascinating 3D graphics,
realistic physics engine, stunning and immersive Ul design, high-difficulty operation experience, and intense
battles are the biggest highlights.

1.1 Game Mechanism

The game includes single player mode and multiplayer battle mode. The goal of the level is to control the
drone to navigate through all the mechanical rings while engaging in combat with enemies. The drone is
equipped with a missle launcher that can be used to Fire bullets with tracking capabilities to attck the
enemies, while the enemies attack by self-destructing when they are close to the drone. In multiplayer mode,
since each ring can only be passed once, the players need to compete with each other or just kill each other
to win the game. Both passing the ring and killing the enemies will give the player scores.

1.2 Game Features

Complex drone controls and game-running strategies, along with the optimization of player experience, are
the two core pillars of this game.

First of all, the game features a realistic and smooth drone control system, simulating the flight control
effects of the drone through dedicated algorithm design. The strategy of bullet tracking and enemy behavior
are also implemented by complex algorithms.

On the other hand, this game is dedicated to delivering the best player experience. We provide tutorial
levels to help players get familiar with the controls, along with a customization feature that allows players
to choose their drone’s appearance. Additionally, we offer an immersive and stunning Ul design, along with
thrilling real-time sound effects, and other detailed game effects, to create a top-notch gaming experience.

1.3 Game Engine and Architecture

The project is mainly developed based on Three.js and Cannon-es.js. The development of this game delves
deep into the underlying architecture, with a significant portion of the systems designed and constructed
from the foundational level.

Drones

The game is launched on the github page. The link is https://he-ren.github.io/ACG_Project_
2024Fall/

2 Method

2.1 Signal System

This project implements a signal system with the ability to send, receive, and manage events through a
listener and signal mechanism.

The signal system is implemented using a combination of event listeners and signals. The SignalTarget
class manages the listeners and signals, and the AlarmClock class is an example of a timed event that
triggers a callback. The system allows for deferred signal processing and supports interrupting signals,
ensuring flexibility in how events are handled.

2.2 Drone Control

The drone controls are designed to interact with both the hardware (i.e., the drone itself) and the software,
enabling the drone to follow specific commands, adjust its altitude, orientation, and speed, and perform
necessary maneuvers.

The drone control system is mainly implemented in the Uav class defined in Uav.js and the files in the
control folder. Basically, the class MechanicsJoystick2D and KeyboardControls are used to get the control
input from the player. These user inputs will be translated into the control commands, and the Uav class
will update the drone’s states and behaviors based on the input. Meanwhile, the JoystickDisplayer class is
used to display the real-time joystick control input on the screen.

As for the detailed implementation, to get a better and more realistic motion control effect, the throttle
control is acted by applying a force to the drone using the applyLocalForce method in the Cannon-es.js
physics engine.

Actually, the Uav class is generally responsible for most of the drone logic, including the initial- ization,
update, audio control, shooting control, and so on.

2.3 Bullet Strategy

Two classes, ChaseStrategy and BulletRegular, are responsible for the bullet control.

ChaseStrategy is used to control the bullet’s tracking behavior. It searched for the nearest target in the
scene and obtain the direction for the bullet to chase. And the BulletRegular class will update the bullet’s
velocity based on the chase strategy.

Beyond tracing, the BulletRegular class also handles the launch, collision, explosion events, and other
bullet-related logic.

2.4 Enemy Strategy

The autonomous enemy drone entity is implemented by the EnemyDrone class. It is designed with various
functionalities, including movement, health management, collision handling, and sound effects.

Movement logic is a key part of the enemy drone’s behavior. It is based upon three states: idle, chasing,
and goingHome. When the enemy drone is idle, remains near its home position and roams within a predefined
radius. When a target is detected within its view distance, the drone actively chases it. If the drone strays too
far from its home position, it returns to its base. When the drone is destroyed, it take on a self-destruction
visual effect through the temperature parameter.

Page 2 of

https://he-ren.github.io/ACG_Project_2024Fall/
https://he-ren.github.io/ACG_Project_2024Fall/

Drones

2.5 UI Design

Instead of using the traditional HTML/CSS UI design, this project implements the UI design in the 3D
scene using Three.js.

The UI design aims to provide a totally immersive visual and interactive experience, hence all the Ul
elements are real 3D interactive objects in the scene. Movement of mesh objects, articulated objects with
skeletal animation, are used to create the animation and interaction effects of the UI elements. In the former
case, the Tween.js library is used to create smooth mesh animations.

Besides, the text are added through texture mapping manipulation on the 3D objects, rather than using
the traditional HTML text or canvas text.

2.6 Camera Control

The camera control is mainly implemented in the FollowCamera class, which supports both third- person
and first-person view, and the switching between them.

In the third-person view, the method updateThirdView method calculates and updates the camera’s
position and orientation in third-person view. The drone’s position and orientation in the scene are tracked,
and quaternion operations are used to slightly offset the camera’s orientation, providing a more cinematic
angle. It also implements a smooth camera movement effect by using the lerp method.

In the first-person view, the camera’s position and orientation are aligned with the drone, and a small
pitch angle is added for more natural view.

3 Results

Below are the technical points and the corresponding results that have been implemented in the project.

3.1 Graphics Assets

e Scene layout: The object geometry, texture, and material.

nn
PRONES

Figure 1: Scene layout in game and UI.

e Environment lighting: The ambient light, directional light, and spot light.

Page 3 of

Drones

Figure 2: Environment lighting detail.

e Synchronized audio: The background music and sound effects.

3.2 Animation

e Animations.
e Articulated objects: The Ul scene contains articulated objects with skeletal animation.

e Fluid simulation: The smoke and fire effects in explosions.

Figure 3: Explosion effect with smoke and fire.

e Collision handling: The collision detection and response between the drone, bullet, and environment.

3.3 Interactive Control

e Control of the main game character: The drone.

e Camera motion control in both third-person and first-person view.

Page 4 of

Drones

3.4 UI Design
e Proper game start and end interface.

e Additional auxiliary interfaces: The customization interface for the drone’s appearance, the manual
interface.

e User-friendly layout with visually appealing design.

3.5 Other Advanced Game Features

e Multiplayer mode.

Figure 4: The multi-player mode.

e Customizable character appearance: The drone’s appearance.

Figure 5: The customization interface.

3.6 Completion

e A fully functional, playable game.

Page 5 of

Drones

e User mannual or instructions.

e e

Figure 6: The mannual level.

e Easy online access: The game can be played on the web browser.

4 Discussion

First of all, one of most advanced features of this project is that it uses the keyboard to simulate the joystick
control of the drone, using multiple keys for each drone to implement the fully DoF and gives the realistic
operation experience. Besides, the project works on implementing highly decoupled and modularized code,
which makes the project more maintainable and extensible.

The innovation point lays in the Ul design, which is implemented in the 3D scene with fully interactive
and realistic 3D objects instead of the traditional 2D UI design, providing a more immersive and visually
appealing experience.

However, there are still some limitations in the project. For example, the level design is relatively simple
and lacks diversity, and the game lacks a more detailed and comprehensive scoring system.

5 Personal Contribution Statement

My work mainly focuses on the Ul interafce, mannual level, and the main game logic. In the UI interface,
my works includes building up the 3D UI scene, designing the layout and the appearance of the Ul objects,
implementing the interactive animation and effects of the Ul objects, the transition animations and logics
between different Ul steps, and adding the sound effects and background music. In the mannual level, I
designed the mannual logic and visualizations. In the main game logic, I implement the overall game loop,
including the start, mode switch, end, etc.

The extral functionalities beside the basic ones I achieved are below:

e Environment lighting.

e Synchronized audio.

Articulated objects: Articulated objects with skeletal animation in the UI scene.

Additional auxiliary interfaces: The manual interface, the customization interface for the drone’s
appearance.

e User-friendly layout with visually appealing design.

Page 6 of

Drones

References

e Parrot Camo drone by [domiiniic], used under [CC BY 4.0](https://creativecommons.org/licenses/
by/4.0/)). Available at
https://sketchfab.com/3d-models/parrot-camo-drone-351867524b9b478fa406aad31d838ef4.

e Drone by [Kai Xiang], used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/).
Available at https://sketchfab.com/3d-models/drone-fabeb5e3b0f6c4023b8e3d189cf55662f.

e (FREE) Robot Drone SDC-01 by [SDC PERFORMANCE], used under [CC BY 4.0](https:
//creativecommons.org/licenses/by/4.0/). Available at
https://sketchfab.com/3d-models/free-robot-drone-sdc-01-666c2£8810494952863f9cc8bd273133.

e Sci-Fi Door by [thomass3278], used under [CC BY 4.0](http://creativecommons.org/licenses/
by/4.0/).
Available at https://sketchfab.com/3d-models/sci-fi-door-33e67bdeee8b48ba9ab17b238565430f,

e CyberRoom by [Julialce], used under [CC BY 4.0](https://creativecommons.org/licenses/by/
4.0/).
Available at https://sketchfab. com/3d-models/cyberroom-scifi-fb9e951263£84af290bfb96ede790d01)

e Button_ru by [imai], used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/).
Available at https://sketchfab. com/3d-models/button-ru-71c4cdbe5f1b4d5d846919e87490b03e.

e Camera Button by [miranda.j.rice], used under [CC BY 4.0](https://creativecommons.org/licenses/
by/4.0/).
Available at https://sketchfab.com/3d-models/camera-button-c22068209db048948253a205f c5a211f!

e Single-Channel Counting Device ’SCCD2_4’ by [NeRD], used under [CC BY 4.0](https://
creativecommons.org/licenses/by/4.0/). Available at
https://sketchfab.com/3d-models/single-channel-counting-device-sccd2-4-afd69a65d90f4844bfd92edb042

e Panel (product design) by [Mrhigh|, used under CC BY 4.0.
Available at: https://sketchfab.com/3d-models/panel-product-design-fbelc3c2d109457486a50ff41508a512

e Sci-Fi Panels by [Xavi Pujadas|, used under CC BY 4.0.
Available at: https://sketchfab.com/3d-models/sci-fi-panels-c1243c5a9e954c539b2c181c886dad62

e gun satellite panel Computer by [Mehdi Shahsavan], used under CC BY 4.0.
Available at: https://sketchfab.com/3d-models/gun-satellite-panel-computer-cc3cabadf3704c198800dd8dc7

e Technology aperture out by [Yuki], used under CC BY 4.0.
Available at:
https://sketchfab.com/3d-models/technology-aperture-out-a47045451f1843bfa69105£84b779717

e Sci Fi Panel Control by [Vladyslav Holhanov], used under CC BY 4.0.
Available at: https://sketchfab.com/3d-models/sci-fi-panel-control-fal2fa24d2664932988c2af9cce565a6

e Space nebula HDRI panorama 360 skydome by [Aliaksandr.melas], used under CC BY 4.0.
Available at:
https://sketchfab.com/3d-models/space-nebula-hdri-panorama-360-skydome-270e7ab4ebled4fcbd5ddb2cleb

e Transformers: War For Cybertron Fusion Cannon by [wickacik], used under CC BY 4.0.
Available at:
https://sketchfab.com/3d-models/transformers-war-for-cybertron-fusion-cannon-57ac9f96d4eb4cOlabbab
Note: Color modified in the game.

Page 7 of

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://sketchfab.com/3d-models/parrot-camo-drone-351867524b9b478fa406aad31d838ef4
https://creativecommons.org/licenses/by/4.0/
https://sketchfab.com/3d-models/drone-fa5e5e3b0f6c4023b8e3d189cf55662f
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://sketchfab.com/3d-models/free-robot-drone-sdc-01-666c2f8810494952863f9cc8bd273133
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://sketchfab.com/3d-models/sci-fi-door-33e67bdeee8b48ba9a617b238565430f
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://sketchfab.com/3d-models/cyberroom-scifi-fb9e951263f84af290bfb96ede790d01
https://creativecommons.org/licenses/by/4.0/
https://sketchfab.com/3d-models/button-ru-71c4c4be5f1b4d5d846919e87490b03e
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://sketchfab.com/3d-models/camera-button-c22068209db048948253a205fc5a211f
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://sketchfab.com/3d-models/single-channel-counting-device-sccd2-4-afd69a65d90f4844bfd92edb042ae132
https://sketchfab.com/3d-models/panel-product-design-fbe1c3c2d109457486a50ff41508a512
https://sketchfab.com/3d-models/sci-fi-panels-c1243c5a9e954c539b2c181c886dad62
https://sketchfab.com/3d-models/gun-satellite-panel-computer-cc3ca5adf3704c198800dd8dc7fafbbf
https://sketchfab.com/3d-models/technology-aperture-out-a47045451f1843bfa69105f84b779717
https://sketchfab.com/3d-models/sci-fi-panel-control-fa12fa24d2664932988c2af9cce565a6
https://sketchfab.com/3d-models/space-nebula-hdri-panorama-360-skydome-270e7a54eb1e44fcbd5ddb2c1e537993
https://sketchfab.com/3d-models/transformers-war-for-cybertron-fusion-cannon-57ac9f96d4eb4c01ab5ab4996e45318e

Drones

e Futuristic Roundtable by [Andulil], used under CC BY 4.0.
Available at:
https://sketchfab.com/3d-models/futuristic-roundtable-252bf93ec1d845288115581c5358be26

e Drone by [ElliotGriffiths], used under CC BY 4.0.
Available at: https://sketchfab.com/3d-models/drone-ad0e1d85295847409e961de33c2eel0bf

e TRON-ish low-poly drone by [Bachklamk], used under CC BY 4.0.
Available at:
https://sketchfab.com/3d-models/tron-ish-low-poly-drone-cadlfc9ada864e06ab69a37705656392

Page 8 of

https://sketchfab.com/3d-models/futuristic-roundtable-252bf93ec1d845288115581c5358be26
https://sketchfab.com/3d-models/drone-ad0e1d85295847409e961de33c2ee0bf
https://sketchfab.com/3d-models/tron-ish-low-poly-drone-cad1fc9ada864e06ab69a37705656392

	1 Introduction
	2 Method
	2.1 Scene layout
	2.2 Environment lighting
	2.3 Synchronized audio
	2.4 Animation
	2.5 Eliminating Stuttering and Jitter by Smoothing Frame Rate Instability
	2.6 Collision handling
	2.7 Control of the main game character
	2.8 Camera motion control
	2.9 Camera shakes
	2.10 A complex third view camera
	2.11 UI Design
	2.12 Entity AI
	2.13 Explosion simulation
	2.14 Heating effect
	2.15 Multi-player mode
	2.16 Customizable character appearance
	2.17 User manual
	2.18 Online access

	3 Results
	4 Discussion
	5 Personal Contribution Statement
	Introduction
	Game Mechanism
	Game Features
	Game Engine and Architecture

	Method
	Signal System
	Drone Control
	Bullet Strategy
	Enemy Strategy
	UI Design
	Camera Control

	Results
	Graphics Assets
	Animation
	Interactive Control
	UI Design
	Other Advanced Game Features
	Completion

	Discussion
	Personal Contribution Statement

